Physicists say wormholes may have already been discovered

Virtual bridges that connect distant regions of space (and time) more or less can look like various black holes in gardens, which means that it is possible that these mythical beasts of physics have already been seen.

But fortunately, if the new model proposed by a small team of physicists from Sofia University in Bulgaria is accurate, they can still be distinguished.

Playing with Einstein’s general theory of relativity long enough, it is possible to show how the space-time background of the universe can form not only deep gravitational pits where nothing escapes – it can also form impossible mountain peaks that cannot be climbed.

Unlike their darker cousins, these glowing hills would slither away from anything approaching, burping out streams of particles and radiation that had no hope of turning back.

Regardless of the obvious possibility that the Big Bang looks like one of these “white holes”, nothing of the kind has ever been observed. Nevertheless, it remains an interesting concept to explore the edges of one of the greatest theories in physics.

In the 1930s, a colleague of Einstein named Nathan Rosen showed that there was nothing to say that the deeply curved spacetime of a black hole could not contact the steep peaks of a white hole to form a kind of bridge.

In this corner of physics, our daily predictions about distance and time go out the window, which means that such a theoretical link could traverse vast swaths of the universe.

Under the right conditions, it might even be possible for matter to board this cosmic tube and exit the other end with its information more or less intact.

So to determine what this wormhole black hole might look like to observatories like the Event Horizon Telescope, the Sophia University team developed a simplified model of a wormhole “ring” as a magnetized ring of fluid, and made various assumptions about how the matter might come about. Circle it before you swallow it.

Particles stuck in this furious storm would produce strong electromagnetic fields that would spin and snap in predictable patterns, polarizing any light emitted by the hot matter with a distinct signature. It was tracking polarized radio waves that gave us the first stunning images of M87* in 2019, and Sagittarius A* earlier this year.

It turns out that the wormhole’s hot, smoky lips are hard to distinguish from the polarized light emitted by the chaotic disk that surrounds the black hole.

By this logic, M87* could be a wormhole. In fact, wormholes may be lurking at the end of black holes everywhere, and we won’t have an easy way to find out.

This does not mean that there is no way of knowing at all.

If we were to get lucky and compile an image of a filter wormhole as seen indirectly through a decent gravitational lens, the precise characteristics that distinguish wormholes from black holes might become apparent.

This would require a mass conveniently placed between us and the wormhole to distort its light enough to amplify small differences, of course, but it would at least give us a way to detect dark spots from the void that have a back exit.

There is another medium that also requires a good dose of wealth. If we detect a wormhole at a perfect angle, the light traveling through its dividing entrance towards us will enhance its signature even more, giving us a clearer indication of a portal through the stars and beyond.

Additional modeling could reveal other properties of light waves that help sort wormholes out of the night sky without the need for a lens or perfect angles, a possibility the researchers are now turning their attention to.

Placing more constraints on wormhole physics could reveal new ways to explore not only general relativity, but also the physics that describe the behavior of waves and particles.

Moreover, lessons from such predictions can reveal where general relativity breaks down, opening some of its own holes to make bold new discoveries that could give us an entirely new way of seeing the universe.

This research was published in physical review d.

#Physicists #wormholes #discovered

Leave a Comment

Your email address will not be published. Required fields are marked *